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1 Introduction

The overall goal of this project was to develop advanced theoretical and numer-
ical techniques to quantitatively describe the spreading of a collimated beam
of charged particles in space, in angle, and in energy, as a result of small de-
flection, small energy transfer Coulomb collisions with the target nuclei and
electrons. Such beams arise in several applications of great interest in nuclear
engineering, and include electron and ion radiotherapy, ion beam modification
of materials, accelerator transmutation of waste, and accelerator production of
tritium, to name some important candidates. These applications present unique
and difficult modeling challenges, but from the outset are amenable to the lan-
guage of “transport theory”, which is very familiar to nuclear engineers and
considerably less-so to physicists and material scientists. Thus, our approach
has been to adopt a fundamental description based on transport equations, but
the forward peakedness associated with charged particle interactions precludes a
direct application of solution methods developed for neutral particle transport.
Unique problem formulations and solution techniques are necessary to describe
the transport and interaction of charged particles. In particular, we have devel-
oped the Generalized Fokker-Planck (GFP) approach to describe the angular
and radial spreading of a collimated beam and a renormalized transport model
to describe the energy-loss straggling of an initially monoenergetic distribution.
Both analytic and numerical solutions have been investigated and in particular

novel finite element numerical methods have been developed.

In the first phase of the project, asymptotic methods were used to develop
closed form solutions to the GFP equation for different orders of expansion, and
was described in a previous progress report. In this final report we present a
detailed description of (i) a novel energy straggling model based on a Fokker-
Planck approximation but which is adapted for a multigroup transport setting,
and (ii) two unique families of discontinuous finite element schemes, one linear

and the other nonlinear.



2 Interaction Physics

Charged particles interact through spherically symmetric Coulomb forces. and
are affected by electronic screening of the nuclear charge. The interatomic

potential between incident particle and the target atom can be expressed as

Vi) = o B (L) 1)

T cm

where e is the electron charge, r the distance between the particle of the atomic
number Z,, and the target material nucleus of atomic number Z,,. The ¢(r) is a
screening function that can be represented by various models. At high energies
screening is unimportant so that ¢(r) = 1, which is just the Rutherford model
[1]. From the interatomic potential interaction cross sections and energy loss
parameteres can be derived. In particular, the mean and mean-square energy
loss per path length in the material are important to our work and are described

below.

2.1 Mean Energy Loss

The predominant energy loss mode for high energy charged particles is through
inelastic electronic collisions which results in ionization and excitation of the
material. What is unique about this energy loss process is the high density of
the electrons in the target material and long range of the Coulomb forces makes
the frequency of the collisions numerous, but the fractional energy lost by the
incident particle per collision is very small. This allows for a simpler description

of the energy loss process through averages rather than the distributions.

For a quantum mechanical treatment collisions can be separated into hard
and soft [2]. A hard collision is an interaction in which the electron can be

regarded as initially free. The relativstic Rutherford cross section for heavy



charged particles that accounts for only the hard collisions is given by [2]
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where E is the incident ion energy, () is the energy lost by the incident particle

per collision, and @4, is the maximum energy that can be transfered. The

latter is well approximated by

Qmaz ~ 1.0226° 3)

where  is the ratio of the ion speed to the speed of light, and

1
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Figure 1: Relatavistic Rutherford Cross Section

A plot of the relativistic Rutherford cross section is shown in figure 1. It
is evident that small energy transfers by far dominate the energy loss process.
Furthermore, because the cross section is extremely large at the small energy

transfers, particle energy transfers occur frequently along the ion path.



Because of the frequency of ion-electron collisions and the small energy trans-
fer per collision, the energy loss process is often approximated as a continuous
process, commonly referred to as the Continuous Slowing Down (CSD) approx-
imation. The average energy loss or stopping power is obtained by taking the
first energy moment of the differential scattering cross section. The stopping
power can be expressed as

Qmaz(B)
S(E) = / S(E, Q)QdQ (MeV/cm) (5)
Qmin

where E is the initial particle energy.

Substituting Eq. 2 into Eq. 5 and simplifying yields
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where H is the a lower bound on the allowed energy transfers, which must be
much larger than the binding energy of the target electron. This limit on H ac-
counts for contributions from hard collisions only. To approximately account for

soft collisions, H is often replaced by the mean excitation-ionization potential,

L

More accurate expressions for S(E) are available, which add semi-empirical

corrections to Eq. 6 such as [3]
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The C; ’s are the electronic shell corrections for the i** electron shell of the

target material and represent nonparticipation of the bound electrons in the

energy loss process as the ion energy decreases below shell binding energy.

The ¢ term is a polarization effect that accounts for pertubation of the
electron field and reduces the energy lost by the charged particle. The a term

and F(8, Zpr) are introduced from the second Born approximation and describe



quantum effects [3]. The F(8, Zpr) term is only important at low energies while

a is important only at ultra-relativistic energies.

The mean excitation-ionization potential is computed from empirical fits or

is given by experimental data [3]. Janni lists an empirical formula of
I ~10.3Z,(1—0.793Z23) (V) Zn >34 (8)

while Turner [4] lists the formula

19.0 : (V) Z=1
1= 11241172y, : (eV) 2<Z, <13 (9)
52.8+8.7Zm :  (eV) Zpm>13

For compounds and mixtures I is computed from the individual elements and
the average I is obtained from the Bragg rule [4, 5]. The Bragg rule can be used
to yield the average I.

i

=57

(10)
where 7 is the index, Z; is the atomic number, and N; is the atomic density for

the 7t material.

2.2 Second Energy Moment

As described previously, high energy ions traverse a the target medium losing
energy through frequent and small electronic energy transfers. An average or
mean energy loss can be computed to represent the particle’s average energy loss
in a medium. However, because the electronic interaction of a charged particle
with the traversing medium is statistical in nature, not every interaction deposits
the same amount of energy. The variation about the mean energy loss is called

energy straggling and is responsible for the spreading of the spectra in energy



of an initially monoenergetic beam. A measure of energy straggling is provided
by the mean squared energy loss in the target. The expression for the straggling
coefficient is

Qmaz ()
T(B)= [ S(B,Q)Q%Q (MeV? fem) (11)
Qmin

If the Rutherford differential cross section is substituted into Eq. 11 we get
for the straggling coefficient
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where N is the atomic density of the target material. To account for other en-
ergy loss fluctations such as soft collisions, charge exchange, etc., semi-empirical

models are frequently employed, such as [6]

T(E) = T(E) ponr (” ) 13)
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where T (E)gonr is the classical limit of Eq. 12 and is expressed as

T(E)Bohr = 4w Z2e*NZ (14)
and
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The ~2 is the effective charge factor for ions in matter. For solid targets >

is computed from the following relation

7 =Gl - e (i) (16)

ionztarget
where C3 and C, are empirical factors obtained from experimental data. The

(Q% 41, /%) factor is computed from
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where again Ay, A, Az, and A4 are empirical factors that are fitted to experi-

mental data. For the (AQ?/Q%) factor, the relation is

AP BB (e ™) (18)
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where By, Bs, B3, and B, are empirical factors fitted to experimental data.

Higher energy loss moments can obviously be computed, and these are nec-
essary when describing the energy spectrum near the surface. However, our
goal is to develop a simple yet accurate and computationally efficient model of
energy straggling suitable for calculating dose distributions, as well as energy
spectra at depths not too near the surface. In general, when the incident ions
have penetrated the target deep enough to lose approximately 10 percent of it’s
initial energy the preservation of the mean and the mean squared energy loss is

sufficient [7] to accurately characterize the spectrum.



3 Transport Models

The distribution of a beam of ions in energy and space must be known to
determine energy spectra, energy deposition, ion deposition, and other physical
quantities of interest. Linear transport theory provides an accurate framework
for developing a quantitative description of the transport and interaction of
ions with amorphous media. In this section, an effective transport equation is
presented which accurately preserves the mean and the mean squared energy
loss of an initially monoenergetic ion beam, but also incorporates higher energy
loss moments approximately. This yields a more robust model than a pure
Fokker-Planck model and is suitable for including in multigroup Monte Carlo

or deterministic codes.

3.1 Effective Transport Model

Because of the disparate ion-electron mass ratio, there is little or no angular
deflection from the electronic interactions, but small angular deflections can
result from nuclear interactions. As we are concerned with the electronic inter-
actions only, the small angular deflections are ignored. With this restriction,

the transport equation can be expressed as

Qmaw

o= | w@s(EQUwE+Q) -S(BE) (19
Qmin

where x is the distance along the ion path.

To numerically resolve energy transfers associated with these collisions would
require an extremely fine mesh in space and energy, which is impractical. How-
ever, because the particles interact frequently, the energy loss process can be
approximated such that to lowest order only the mean and the mean squared

energy-loss moments of the underlying scattering process are preserved. Under



these conditions, the scattering integral can be replaced by a Fokker-Planck

approximation given by,

r \Il—iSElIl E 16—2
rp¥ = S (S(E)U(, E)) + 555

where the first energy loss moment coefficient S(E) is expressed in Eq. 5 and the

T(E)¥(z, E)) (20)

second energy loss moment coefficient T'(E) is expressed in Eq. 11. Although
higher order terms can be included, the resulting expansion does not yield a

robust model [8]. Substitution of Eq. 20 into Eq. 19 leads to

ov 9 19
5 = 55 SE) (@, B)) + 5 50 (T(B)¥(z, E)) (21)

with the incident distribution

0(0,E) = 6(E — Eo) (22)

The above transport equation contains a second order energy derivative term
that acts as an energy diffusion term and introduces upscatter in energy. While
the term represents the physical spreading of the beam, the upscatter effect is
not physical. Nevertheless, this model is known to yield accurate spectra in the
target interior. A multigroup representation of this model can be obtained using
judiciously derived group cross sections. For energy E in group g, the following
multigroup transport equation can be shown to be equivalent to the continuous

energy Fokker-Planck model in limit of vanishing group width:

OB O (S YR, B) + (0gsgr + 050y ) W) = (23)

T9-1—g A O9+1—g A
TEQ‘I’gfl(m) + TEg‘I’gH(iU)
Where Eg+% <EL Eg_%, g =1,2,3---Ng. The cross section represents

the combined effect of many statistical collision events that result in small energy
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transfers. Thus the cross section should only describe scattering to adjacent
groups for a energy group exceeding the actual mean energy loss per collision.
The particles are never allowed to straggle above the their initial energy and
exit the system if they cross the cutoff or minimum energy. The cross sections
are then defined such that the mean squared energy loss in scattering out of

group g is preserved, i.e.

Ogsg (By — Eg1)? =22 for g/ =g+1

Ogg =0 for ¢ #g+1 (24)

and

Ogg (Eg — Ey_1)* = % for g/ =9g—1

Ogmg =0 for ¢ #g-1 (26)

For the first energy group the cross section is twice that of the downscatter
piece and the upscatter piece is defined to be zero. Thus no upscatter can
occur above the initial particle energy, Ey. The above multigroup model suffers
from the same short coming of the Fokker-Planck model, namely the presence
of upscatter. Not only is this feature unphysical (although the effect is small) it
introduces unecessary algorithmic complexities when a deterministic numerical
solution of Eq. 23 is attempted. To circumvent this difficulty we propose the

following simpler, strictly downscatter model:

0%(z,E) 0 A Og-1 A
e~ 95 S@ Y@ E) + 0y ¥(0) = UL @) (28)

The cross section for this model is given by

11
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Ogg (Bg = Eg1)" =Ty g =g+1

Ogsg =0 g #g9+1 (29)

where now the mean square energy loss is entirely preserved by scattering to the

adjacent lower energy group. However, by virtue of the nonsymmetric process,

an additional, spurious, mean energy loss associated with oy_,441 is introduced.

The stopping power associated with this extra energy loss may be expressed as
S; = Og—g+1 (Eg - Eg+1) (30)
and an effective group stopping power defined by

Sy=28,—S; (31)

to ensure preservation of the physical mean energy loss. Our multigroup strag-

gling model is tested in the next section using a Monte Carlo implementation.
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4 Single Event Monte Carlo and Multigroup Monte

Carlo Simulations

In this chapter the results of multigroup Monte Carlo upscatter and downscatter
models are compared against a single event Monte Carlo code that simulates in-
dividual ion-electron interactions using the relativistic Rutherford cross section.
The latter provides a benchmark for the multigroup straggling model proposed
earlier. The total scattering cross section is on the order of 10*cm ™! which re-
sults in small mean free paths and makes the single event Monte Carlo method
very time consuming to run. The multigroup model cross sections, on the other

hand, are on the order of 10~1cm~! and thus are relatively quick to run.

For the comparisons, the two problems of interest are a 1700 MeV beam
of protons on a tungsten target and a 3.75 MeV beam of alpha particles on
an aluminum target. The 1700 MeV proton beam problem is representative
of recent accelerator driven nuclear applications [9], and the 3.75 MeV alpha
particle beam problem is a simulation of alpha particles resulting from a fusion

reaction impacting on an aluminum barrier.

4.1 Single Event Monte Carlo Code

In the single event Monte Carlo simulation, the distance to collision is sam-
pled from an exponential distribution with mean free path given by the total
scattering cross section, and the energy loss in a collision is sampled from the

normalized differential cross section. The Rutherford cross section may be ex-

pressed as
o(E,Q) =a(E)P(Q), Qmin <Q < Qmax (32)
where
Qmasz
oB) = [ o(B.@Q (33)
Qmin
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and P(Q) is a normalized distribution given by

H@z%%%— (34)

The Rutherford cross section is

&m%ﬁ@po_y Q)
A2ﬂ2Q2 Qmaw

All ions are started at an initial energy Ey and at distance £ = 0. A ran-

o(E,Q)dQ = (35)

dom number ¢ is generated and the distance to collision is determined by the

expression

(36)

This distance is compared against the distance to the end of the slab. If the
distance to collision is smaller than the distance to the end of the slab, the
particle is moved forward by the increment Az4., and the energy loss is sampled.
If the distance to the end of the slab is smaller than the distance to collision,

the particle is moved to the end of the slab and the ion energy is scored.

The amount of energy lost can be obtained by generating a new random
number £, and setting that number to a cumulative distribution function of the

cross section. This is expressed as

Q
¢= / P(Q)dQ’ (37)

where () is the energy transfered in the collision. The evaluation of the cumu-
lative distribution function results in a nonlinear expression of (). To get @), a

fixed point iteration method is applied to Eq. 37.

After the energy lost from the collision is subtracted from the particle’s

current energy, a new distance to collision is computed based upon the new

14



energy. The process is repeated until the particle reaches the end of the slab.
The particle distance and energy is the scored, and then another particle can
be simulated. To minimize statistical error, typically one to ten million particle

histories are simulated.

4.2 Multigroup Monte Carlo Codes

The multigroup Monte Carlo methods use a divided energy domain of contigu-
ous elements called groups. By allowing collision events to be averaged over a
group, a significant gain in the speed of the computation occurs. For the multi-
group Monte Carlo methods the individual electronic collisions are replaced by
transitions to adjacent groups with probabilities determined by group averaged
cross sections. The mean energy loss given by the continuous slowing down
representation is simulated exactly between collisions, so that the method is

actually a hybrid deterministic-Monte Carlo model.

The particles are initially started at z = 0 and randomly distributed within

the first energy group which is expressed as
Eo=E; — (0E,

where £ is a random number. Once initially assigned, the particle travels through

the slab. A distance to collision is computed from the formula

Azg, = Lg(@ (38)
Ototal,g

for group g and where 0¢otas,4 for the upscatter model is

Ototal,g = Og—g+1 T Og—g—1 (39)

and for the downscatter model is

Ototal,g — Og—g+1 (40)
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The distance to collision is compared to the distance to the bottom energy
group boundary and to the distance to the end of the slab. If either the energy
boundary or the slab boundary is smaller than the distance to collision, then
the particle is moved by that distance and loses energy according to the current

group stopping power. The energy loss is expressed as

Ecurrent = Eprem’ous - SgAmcollisiontype

If the distance to collision is smaller than the distance to bottom energy
group boundary or distance to end of slab, the particle is collided and either
gains or loses energy by AE, for upscatter or just loses energy by AE, for
downscatter. The calculation continues until the particle exits the slab. Then
the particle energy and distance are scored and the next particle can be simu-
lated. Again, one to ten million histories are simulated in order to accumulate

adequate statistics.

4.3 Results

For the single event and the multigroup Monte Carlo methods, the exiting parti-
cle position and energy are written to a file and then binned based on the group
structure. Results have been obtained for the 1700 MeV protons on tungsten
at depths of 2, 5, 10, 20, 43, 65, and 85 cm. The incident proton for the 1700
MeV protons on tungsten problem using the Rutherford cross section has a
range of 130cm, so that 43, 65 and 85cm distances represent one-third, one-half,
and two-thirds range respectively. We begin by examining proton spectra in

tungsten at depths of 10, 20, 43, 65, and 85cm.

For these cases, the energy group widths are 8.54 MeV. A much wider group
width can be applied because the spectra has spread sufficiently for this depth.
Overall both the upscatter and downscatter Monte Carlo methods capture the

spectra behavior very well. The 10cm upscatter case agrees quite well with the

16
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Figure 2: Spectra at 10cm for Protons on Tungsten

single event Monte Carlo but then the 20 and 43 cm cases have the upscatter
model slightly overshooting the peak. These effects are due to the binning of
the Monte Carlo data, and refined energy group structures and more particles

would smooth these effects out.

However, the downscatter model underestmates the spectra at the high en-
ergies and slightly overestmates at the lower energy tail. The differences can
be attibuted to an overestimate of higher energy loss moments, particularly the
mean cubed, by the downscatter model, which results in a more skewed spec-
trum. The upscatter model, which has no mean cubed energy loss, shows better

results than the downscatter.

For the 2cm and 5cm cases a finer energy group width of 0.5 MeV is needed
so as to accurately resolve the spectrum. The upscatter and downscatter Monte
Carlo models clearly do not agree as well as the cases deep within the slab. The
explanation for the disagreement is that higher moments such as the mean cubed

become important near the surface of the slab. The higher moments effects fall
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Figure 3: Spectra at 20cm for Protons on Tungsten

rapidly with decreasing energy. Thus near the surface and at high energies
where higher moments are important the spreading is not accurately captured
by the cross section model because the cross section model only captures the

mean squared.

For alpha particles on aluminum the results obtained were at 0.0001, 0.00025,
0.0005, 0.001, 0.0015, and 0.002cm. The total range for the alpha particles
in this problem was 0.003cm. For the 0.0001 and 0.00025cm cases, AE, =
0.00375 MeV was necessary to obtain smooth spectra. We note that in all cases
the multigroup results, rigorously preserving only the mean and mean-square
energy losses, are in excellent agreement with the exact single event results. The
reason is that at these low energies, the mean energy loss dominates and the

mean-square moment is significantly larger than the higher moments.
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Figure 5: Spectra at 65cm for Protons on Tungsten
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Figure 7: Spectra at 2cm for Protons on Tungsten
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Figure 9: Spectra at 0.0001cm for alpha particles on aluminum
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Figure 10: Spectra at 0.00025cm for alpha particles on aluminum
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Figure 11: Spectra at 0.0005cm for alpha particles on aluminum
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Figure 13: Spectra at 0.0015cm for alpha particles on aluminum

23



b(xB)

3.75 MeV a -> Al

0.002cm
8 T T
— Rutherford
B — — Upscatter
Downscatter
61— ]
40— _
2 ]
o \ = L | \
0.5 0.75 1 1.25 15 1.75 2

Energy (MeV)

Figure 14: Spectra at 0.002cm for alpha particles on aluminum
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5 Arbitrary Order Linear Discontinuous Finite

Element Methods

In this and the following sections we consider deterministic numerical solution
of the effective transport equations introduced and examined in the previous
chapters. In particular we use the Galerkin finite element method in space
and energy to construct numerical schemes that have arbitrary orders of accu-
racy. Low order finite elment methods have been used extensively with great
success for neutral particle transport where collisions are well defined discrete
interactions and distributions are broad. However, for charged particles, which
essentially slow down continuously, the energy and angular distributions relax
slowly and require higher order numerical representations. This is particularly
tru for monoenergyetic incidence and hence is relevant to the considerations of

this report.

Two families of approximating trial functions on a space-energy grid are
considered. In the present and next section, a linear family of arbitrary polyno-
mial degree trial functions is first investigated with applications to the upscatter
and strictly downscatter straggling models. Numerical results are compaared
against the multigroup Monte Carlo results of the previous chapter to assess
accuracy and robustness. Then in the following two section a novel non-linear
family of trial functions is proposed and tested. This is a computationally more
demanding approach but has great promise because the scheme is inherently

positive and monotone.

5.1 Finite Element Background

The general finite element approach is a popular method for solving different
challenging problems in science and engineering, and is well documented in the

literature. [10, 11, 12, 13, 14] Here we present a brief and general background
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and then look at specific problems of interest to us.
The finite element technique seeks to represent the solution u to an operator
equation represented by

L(w) = f

where the operator L() is a linear operator and where f is a function of the
independant variables. This form of the equation is sometimes called the “strong

form”.

The finite element method starts by discretizing the domain into pieces or
elements. The discretization is done so that the solution can be represented

over the smaller elements rather than the whole domain.

Next a basis set is chosen to approximate u. The approximation is expressed

as
N
U vV= Z Uij
j=1

where B; are the trial basis functions and U; are the unknown coeflicients. In
the effective transport equation B; will be a function of space and energy and
U; be the associated coefficients. The approximation of u is not exact and when
v is substituted into the linear operator an error or residual results which, may

be expressed as

R(v) =L(v) - f #0

The residual can be minimized by multiplying the residual by a weight func-

tion and then integrating the resulting product over each element.

(w;j|L(w) = f)y=0,j=1,---N
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where w; are suitable weight functions. If L is a differential operator then
integrating by parts allows continuity conditions on the trial functions to be

relaxed. The resulting form is called the “weak form”.

The result is a system of equations that can be solved for the approximation
coeflicients U;. If the weights and the approximation of u are constructed from
the same basis functions, the method is referred to as the Galerkin finite element
method. Other bases can be chosen such that the weights and the approximated
solution are different. (this will be the case in our second method using nonlinear
trial functions.) The weak form allows the trial functions to be discontinuous at
the inflow boundary of each element. The extra freedom yields higher accuracy,
greater robustness, and although strictly positive solutions are not guaranteed,
any negativities are strongly damped as a result of allowing discontinuities in

the trial functions.

The final step is to solve the linear system of algebraic equations for the
unknown coefficients that results from the residual minimization over each ele-

ment.

We begin by discretizing the space and energy domain into elements, with

G energy groups and K spatial cells such that E,

1 >E2Eg+% andmk_% <
T < Ty For each element the flux is approximated by a A x B degree
polynomial where A is the maximum order of the spatial expansion and B is
the maximum order of the energy expansion. The constant or flat polynomail is
used to ensure particle balance and the first energy moment for energy balance.
With the exception of these two requirements the polynomial representation
minimized over each element can be constructed to whatever order the user
wants with any number or cross terms. The polynomials do not have to be
made up of complete sets with cross terms. Any combination that contains
the flat and first order in energy is permissable. Again the values of A and

B are arbitrary assuming sufficient computer resources can be obtained. In

particular, we choose Legendre polynomials as trial functions and exploit thier
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orthogonality to greatly simplify the construction of the linear system. Legendre

polynomials may be defined by Rodrigues’s formula [15]

Py(2) = gz g [(2* = 1)) (41)

2nn! dzm

The orthogonality of the Legendre polynomials over (-1,1) may be expressed

as

2

5= n=n'
/ Pa(2)Pu(z)dz = { 21 (42)
Y, 0 n#n
For represntation on the grid element (z;_1,2)41) X (E 1, E,_1) we use
shifted Legendre polynomials, expressed as
P[Lx—x : for zp_ 1<z <mp 1
ey = | Plem=) CEOTTES a)
0 : otherwise
P |- (E-E : for E 1 <E<E, _1
p-Z(E) _ b I:AEQ( 9)] g+2 — g—3 (44)
0 : otherwise
The trial function for the space-energy flux is then expressed as
A B
Uz, B) = > > ph(a)p](B)T;" (45)

a=0 b=0

where g is the energy group index, k is the spatial cell index, and a and b are
the Legendre polynomial indices for space and energy moments. In following

the Galerkin procedure, we take for the weight fucntions in cell k' and group ¢’

pg:(x)p‘g'l(E)aa’ = 051723"'N7bl = 031725"'3 (46)

This choice of weight functions ensures at a minimum the preservation of

particle number and energy, important constraints for the class of problems
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of interest here. The trail functions are further allowed to be discontinuous
at inflow boundaries in space and energy as depicted in fig. 15 This provides
varying solutions while minimizing over- and under-shoot and enhancing overall

robustness.

E'Q"lfz e ‘

Eg+l;‘2

i »
E-1/2 E+1/72

Figure 15: Graphic of finite element at z; and E,

5.2 Linear Family of Arbitrary Degree

Polynomial Discontinuous Finite Element Solutions

We proceed with applying the method outlined above to the effective transport
equations. In particular we demonstrate the method on the upscatter model
because the downscatter model easily follows as a special case. Taking the inner

product with the weight functions leads to
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(War b |L(¥) = Q) = 0,0’ =0---A,0'=0---B

where
L= 3z a—ES(»’UaE) +0gagr1] |7+ ogag-1] ] (47)
and
Eg—% Eg+%
0= / Ao, 1 U (2, E) + / dE',41 0 (2, ') (48)
E _3 FE +l
9=3 9T

and where a’ and V' are the order indices for the weight function w. The upscat-
ter finite element model has an unknown source term from particles that scatter
up from adjacent groups and introduces iterations over the entire element grid
which are indexed by j. For the downscatter model no particles are scattered
up from the group below, and thus no iterations are necessary, making it com-
putationally more efficient than the upscatter model. Introducing the terms
explicitly, the weighted residual becomes

J\I’j+1($7E) |kz+% LU(.’L',E) |k+% dE _;!‘IIJj-’_l(x,E) |k7% UJ(.Z',E) |k7% dE

{fqﬁl(x,E)%dEda:—{(S(x,E)xI:j“(x,E)) lg—2 w(z, B)|, 1dw
g

+ [ (S(z, B)¥(z, E)I*1) |y 1w(@, E)|yy ydo + kf [ 8(z, E)UIt! (z, B)22&P) By
k g

f f Ug+1111A’j(;L',E)IW($,E)dEd:L':

k g+1 !
[ |34 (2, B') [ w(z, E)dzdE (49)
g—1k g g

Next, we integrate the streaming terms in space and energy and introduce the
discontinuity by setting the inflow current to the exiting flow from the previous

element. For every element g, k the resulting weak form is given by

f‘I’j+1(H}',E) |k+% w(.’L’,E) |k+% dE — f\I’j+1(.’L',E) |k71 w(x,E) |k—% dE

9 9

[ [ (@, B) 2B dEds — [ (S(@, B)¥7+ @, B) |g-1 (@, By ydo
g

+ [ (S(z, E)¥(w, E)I*Y) |y 10(z, B)| gy 1dz + [ [ S(w, )W+ (z, E) 2 42E dEdx
k k g9
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ffag%g' (x,E)lIIA’j"'l(x’E)w(x’E)dEd,’[j =

fl kde' R ¥ (2, B') [ w(z, E)dzdE (50)
g g

Introducing the weight functions explicitly and simplifying gives, after much

algebra,

A
a+a’ +1,9,k
+8, (885) sty 3 (-0 + a5 ) Wi

a=0

A J+l.9.k _
+0gg (552) s AE Ty

Axy J,9—L,k
AE;, 1AEjo,1 =52 2 2b’+1\IIO’b’
B

A
A j+1,9—1,k AE j+1,9,k—1 !
+S!J—1k E (_l)a ( ;k) 2b’2+1 lI;il,a,b!i +Nn E ( 2 g) 2a’2+1 lIJfl,a’,% (_l)b

a=0 b=0
(51)

B
AEQ 2 j+1,9,k
( 2 ) 24’41 b—zo (1 Bl 2b+1) o
A

where the 7y, and v, are coefficients resulting from the expansion of the derivative

of the Legendre polynomial in terms of Legendre polynomials.

Defining IIIE; as the vector of unknowns, the above systems can be expressed

in compact matrix-vector notation as
11 : .
‘Alwc,g B‘I’i k—1,9 + CIIJ?W*I + Q?c,g (52)

where the order of the matrix A is (4 + 1) x (B + 1). The maximum order of
the matrix is fixed a priori and the algorithm proceeds by marching across the
spatial cell row and then down in energy, locally inverting a (A 4+ 1) x (B + 1)
system in each 2D element (k, g).

The outer iterations (on ¥° ’+1 «) for the upscatter model are converged to a

preset tolerance according to the Ly norm given by

] 1,0,0 j+1,0,0 2
g; ; (‘IJ‘;’,]‘; _ l:p‘;’k sy )
€> N, N, (53)
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Table 1: Graphical Representation of Legendre Moments
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6 Numerical Results for Linear Family Methods

The multigroup Monte Carlo implementation of our straggling model clearly
demonstrated the accuracy of the model at a sufficient depth. Excellent agree-
ment was realized for 1.7GeV protons on tungsten and 3.75MeV alpha particles
on aluminum and similar agreement is expected with other ion-target combi-
nations. In this section we consider numerical results obtained using the linear
family of arbitrary polynomial discontinuous finite element method described in
the previous section. The finite element approach yields results that are quick
to obtain and gives fitted polynomials over each element, allowing quantities

such as spectra, dose, and ion deposition to be computed.

The convergence with number of groups, number of spatial cells, and conver-
gence in polynomial order are compared against the multigroup Monte Carlore-
sults. The results in this section were calculated with the Rutherford stopping
power given in Eq. 6 and the Rutherford energy straggling coefficient given
by Eq. 12. All upscatter finite element results are converged to a tolerance of

1.0 x 1078, with uniform spatial and energy cells.[16].

6.1 Convergence of the Space Energy Mesh

To obtain an accurate solution the finite element method must minimize the
error of a polynomial fit over elements. The elements must divide the domain
such that an accurate representation can be obtained but yet the division must
not be extremely fine where little is gained for the extra division. Furthermore,
the cost of obtaining the polynomial fit increases with increasing order, spatial
discretization, and energy discretization. Convergence studies of the space and
energy discretization can help determine if the approximated polynomial fit is
representing the desired solution or if the element structure is too crude to do

S0.
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For the convergence study a low order polynomial method, the bi-linear
discontinuous (BLD), and a higher order polynomial method, the quadratic
discontinuous (QD), were selected to be examined. Results from higher order
trial functions will also be presented. The spectra are examined at the one-third
range position of 43.0cm, where our straggling model is known to be accurate
but the distributions are peaked enough for high order methods to make a
difference. The different energy group and spatial step structures are given in

table 2.

Table 2: Table of number of energy groups to energy group widths and number

of spacial cells to spacial cell width

Number of Groups AE, Number of Spacial Cells Ay,
50 33.998 MeV 130 1 cm
100 16.999 MeV 260 0.5 cm
200 8.5 MeV 520 0.25 cm
400 4.25 MeV 1040 0.125 cm
800 2.125 MeV - -

As the group structure changes so does the energy straggling cross section
and the Monte Carlo multigroup bin structure. To account for the changes due
to group structure, results from the finite element results must be plotted against
the appropriate Monte Carlo multigroup result. The energy group refinement
is shown in figures 16, 17, 18, and 19. Each group refinement case had a spatial

step size of 0.1cm.

In figure 16 and 18 we note that the upscatter and downscatter BLD results
are not fully converged even at the extremely refined group structure of 800
groups. On the other hand, figure 17 and 19show that the QD method converges
for 200 energy groups. This is an important result that has not been demon-
strated before - the widely used LD and BLD finite element representations that

are so extensively employed in neutral particle transport prove inadequate for
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1.7GeV H'->W

43.0cm
0.03 I I ‘ . -
B —— Monte Carlo Upscatter, 50 groups f\ 7
0.025~  ---- Monte Carlo Upscatter, 200 groups ‘2: _|

— — Monte Carlo Upscatter, 800 groups

G—o BLD Upscatter, 50 groups .

0.02}~ @ -0 BLD Upscatter, 200 groups ) —
<& — BLD Upscatter, 800 groups %

J0.015

0.01

0.005

| | | | |
1000 1050 1100 1150 1200 1250 1300 1350

Energy (MeV)

Figure 16: Bi-linear discontinuous upscatter finite element group convergence

for protons on tungsten at 43.0cm

charged particle transport. Note also that the negative oscillations in the tails

are highly damped in all cases.

For the convergence in space all results are computed with a AE, = 8.5 MeV
which is near the maximum energy transfer computed for the Rutherford cross
section. The quadratic discontinuous finite element method shown in figures
22 and 23 converge in space for 130 spacial steps. The BLD finite element
methods shown in figures 20 and 21 converge in space at 260 steps but need
much greater refinement in energy to approach the Monte Carlo multigroup
results. Furthermore, both the BLD and QD finite element methods show a

dissipation of the negative oscillations with decreasing spacial step size.
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1.7GeV H'->wW

43.0cm
0.03 I I I ‘ I

—— Monte Carlo Upscatter, 50 groups qﬁ

0.025 Monte Carlo Upscatter, 100 groups |
— — Monte Carlo Upscatter, 200 groups " ..j'
G—o QD Upscatter, 50 groups ,;..' 1
0.02 =- -8 QD Upscatter, 100 groups q’

= -0 QD Upscatter, 200 groups

T
x0.015
=

0.01

0.005

- EDE
1200 1300 1350
Energy (MeV)

Figure 17: Quadratic discontinuous upscatter finite element group convergence

for protons on tungsten at 43.0cm
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1.7GeV H'->wW

43.0cm
0.03 T T T T T
B —— Monte Carlo Downscatter 50 groups 7]
0.025— -+-- Monte Carlo Downscatter, 200 groups —
— — Monte Carlo Downscatter, 800 groups
B G—© BLD Downscatter 50 groups 1
0.02 — @@ BLD Downscatter 200 groups |
. & = BLD Downscatter 800 groups
Jo.015
=
=
0.01
0.005
O =
| | |
1000 1050 1100 1150 1200 1250 1300 1350

Energy (MeV)

Figure 18: Bi-Linear discontinuous downscatter finite element group conver-

gence for protons on tungsten at 43.0cm
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1.7GeV H'->wW
43.0cm
| | T

0.025 —— Monte Carlo Downscatter, 50 groups

- -..- Monte Carlo Downscatter, 100 groups
— — Monte Carlo Downscatter, 200 groups
0.02— e—o QD Downscatter, 50 groups

=- -8 QD Downscatter, 100 groups

& — QD Downscatter 200 groups

0.015 —

Y(X,E

0.01—

0.005 —

|
1050 1100 1300
Energy (MeV)

Figure 19: Quadratic discontinuous downscatter finite element group conver-

gence for protons on tungsten at 43.0cm
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1.7GeV H'->wW

43.0cm
0.03 T
B —— Monte Carlo Upscatter 7]
0.025 — BLD Upscatter, 130 steps ]
— — BLD Upscatter, 260 steps
r —- BLD Upscatter, 520 steps T
0.02 — G- 0O BLD Upscatter, 1040 steps ]
[TT)
5—0.015 —
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0.01—
0.005 —
o | < ity X A ! Sero-S-0600600
1000 1050 1100 1150 1200 1250 1300 1350

Energy (MeV)

Figure 20: Bi-linear discontinuous upscatter finite element step convergence for

protons on tungsten at 43.0cm
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1.7GeV H'->wW

43.0cm
0.03 I I I ‘ ‘

—— Monte Carlo Downscatter
0.025 |— ---- BLD Downscatter, 130 steps
— — BLD Downscatter, 260 steps
r -—. BLD Downscatter, 420 steps
0.02 G -© BLD Downscatter, 1040 steps
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Figure 21: Bi-linear discontinuous downscatter finite element step convergence

for protons on tungsten at 43.0cm
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1.7GeV H ->W

43.0cm
0.03 ‘ ‘ ‘ ‘ ‘
B —— Monte Carlo Upscatter ]
0.025 - -+ QD Upscatter, 130 steps ]
— — QD Upscatter, 260 steps
o -— . QD Upscatter, 520 steps B
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Figure 22: Quadratic discontinuous upscatter finite element step convergence

for protons on tungsten at 43.0cm
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1.7 GeV H ->wW

43.0cm
0.03 I I I ‘ I
B —— Monte Carlo Downscatter ]
0.025 |— ---- QD Downscatter, 130 steps _
— — QD Downscatter, 260 steps
r -—- QD Downscatter, 520 steps T
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Figure 23: Quadratic discontinuous downscatter finite element step convergence

for protons on tungsten at 43.0cm
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6.2 Higher Order Methods

The finite element results for different order polynomial trial functions are com-
pared against the respective Monte Carlo methods for a fixed spatial mesh and
group structure. The comparisons show that accuracy gains are achieved with
increasing polynomial order but not beyond the quadratic order. These results
are shown in figure 24 and figure 25. The spectra is examined at 65.0cm in
figures 24 and 25 where it has spread considerably from energy straggling. The
energy group width is AE, = 8.5MeV and the spatial mesh step is Az = 0.5cm

for these two cases.

1.7GeV H'->wW

65.0cm
0.03 ‘ ‘ ‘

—— Monte Carlo, Downscatter
| — — LD, Downscatter
0.025 -—- BLD, Downscatter
- o— o QD, Downscatter
---- CD, downscatter
0.02 — =--a BLD Downscatter, 400 groups

0.015— —
0.01— —
0.005 [— —
n SN i
NN o
o ‘ Cga | | ‘@',?é‘e‘:*?ﬁ e — |
800 850 900 950 1000 1050 1100

Energy (MeV)

Figure 24: Discontinuous downscatter finite element method polynomial order

convergence for protons on tungsten at 65.0cm

The figures 24 and 25 show that the BLD method must double the number
of energy groups to be nearly as accurate as the QD method at half range. As
shown in 16 and 18 the BLD method would require more groups at shallower

depths to accurately capture the spectra.
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1.7GeV H'->W

65.0cm
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Figure 25: Discontinuous upscatter finite element polynomial order convergence

for protons on tungsten at 65.0cm

When the group width cannot be sufficiently refined in places where highly
accurate solutions are desirable, polynomials of order higher than the quadratic
can often be used to good effect. An example is given in figure 26 displaying
the spectra at 10.0cm. For a group width of 8.5MeV and spatial cell width of
0.5cm the quartic discontinuous (QT) method does better than the quadratic

and cubic finite element results.

Figure 27 shows the effect of the removal of the bi-linear term and the small
increase that the linear discontinuous (LD) finite element method shows when
the strictly quadratic terms, i.e., the “X2” and “E?” terms, are added. As
shown in figure 27 the gains made by the linear discontinuous finite element
method with the extra quadratic terms are not as significant as the inclusion of
the bi-linear cross term. Thus the cross terms play a significant role in resolving

the peaked energy spectra, but all terms are necessary to achieve complete
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1.7 GeV H ->wW

10 cm
I I
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Figure 26: Discontinuous upscatter finite element polynomial order convergence

for protons on tungsten at 10.0cm

accuracy.
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1.7GeV H' ->W
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Figure 27: Cross Term compairison for discontinuous upscatter finite
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for protons on tungsten at 65.0cm
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6.3 Results for deep penetration

The finite element method was applied to the 1.7GeV protons on tungsten
problem with AE, = 8.54MeV and Az, = 0.5cm and compared against the
Monte Carlo multgroup method. The polynomial order of the finite element
method needed is the full quadratic (with all cross terms in the trial function).

The spectra was examined at the one-third, one-half, and two-thirds range.

1.7GeV H'->wW

43.0cm
0.03 ‘ ‘ ‘ I ‘

— Monte Carlo

0.025 [ -- Qb —
0.02 -
00.015 |—

0.01—

0.005 —

\z
| | | | | | | | | | |
1000 1050 1100 1150 1200 1250 1300 1350

Energy (MeV)

Figure 28: Quadratic discontinuous downscatter finite element method and

downscatter Monte Carlo method for 1.7GeV protons on tungsten at 43.0cm.

These results are in excellent agreement with the Monte Carlo methods. For
the 3.75MeV alpha particles on aluminum case, the finite element method is
compared against the multigroup Monte Carlo method for the one-third, one-
half, and two-thirds range. The finite element polynomial order was a full
quadratic and the energy width was AE, = 0.09967 MeV and the spacial width

was Az = 1.0 x 10 %cm.
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1.7GeV H'->wW

43.0cm
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Figure 29: Quadratic discontinuous upscatter finite element method and up-

scatter Monte Carlo method for 1.7GeV protons on tungsten at 43.0cm.
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1.7GeV H'->wW
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Figure 30: Quadratic discontinuous downscatter finite element method and

downscatter Monte Carlo method for 1.7GeV protons on tungsten at 65.0cm.
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1.7GeV H'->wW
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Figure 31: Quadratic discontinuous upscatter finite element method and down-

scatter Monte Carlo method for 1.7GeV protons on tungsten at 65.0cm.
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1.7GeV H'->wW
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Figure 32: Quadratic discontinuous downscatter finite element method and

downscatter Monte Carlo method for 1.7GeV protons on tungsten at 86.0cm.
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1.7GeV H'->wW
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Figure 33: Quadratic discontinuous upscatter finite element method and up-

scatter Monte Carlo method for 1.7GeV protons on tungsten at 86.0cm.
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3.75 MeV a->Al
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Figure 34: Quadratic discontinuous downscatter finite element method and
downscatter Monte Carlo method for 3.75MeV alpha particles on aluminum

at 0.00lcm.

For the fusion alpha particles on aluminum problem, the negative oscillations
experienced by the discontinuous finite element method are not evident. The
oscillations disappear because the problem is dominated by mean and mean

squared energy losses.

6.4 Dose and Ion Deposition

Results of energy deposition or dose were obtained for the 1.7GeV proton beam
on tungesten and the 3.75MeV alpha particles on aluminum. All results show
a characteristic Bragg peak. The expression for computing energy deposition is

Emae  k+}

Dy = —— / dE | dzS(z,E)¥(z,E) (54)
A.’L’k
T

Emin

[0
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3.75 MeV a -> Al
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Figure 35: Quadratic discontinuous upscatter finite element method and upscat-

ter Monte Carlo method for 3.75MeV alpha particles on aluminum at 0.001cm.

where Dy, is the energy deposition for the k" spatial point in units of MeV /cm.
For the 1.7GeV proton beam on tungsten, the energy group width was 8.5
MeV and spacial cell width was 0.5 ¢cm, and for the alpha particles on alu-
minum the energy group width was 0.1725 MeV and the spatial cell width was
1.0 x 107% cm. Both figure 39 and figure 40 display the dramatic difference
resulting from including energy straggling in energy deposition calculations and
the need for higher order polynomial trial functions for sufficiently crude en-
ergy grids. The Bragg peak for the CSD only case is very peaked while the
energy straggled cases show broader Bragg peaks. This result has not been

systematically demonstrated before.

The energy deposition results for the 3.75MeV alpha beam on aluminum
display the dominance of the mean energy loss. In figure 41 and 42 the dose

is sufficiently spread, so higher order polynomial trial functions add no extra
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3.75 MeV a->Al
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Figure 36: Quadratic discontinuous downscatter finite element method and
downscatter Monte Carlo method for 3.75MeV alpha particles on aluminum

at 0.0015cm.

resolution to the Bragg peak.

The ion deposition measures the spatial distribution of stopped ions in the
target and can be obtained from the number of ions slowing down past the
bottom energy group boundary and the number of ions straggling out of the
bottom energy group. The ion deposition profile was calculated for protons on
tungesten with energy group width was 8.5MeV and the spacial cell width was
0.5cm. For alpha particles on aluminum the energy group width was 0.1725
MeV and a spatial cell width was 1.5 x 10~5cm. Figures 43 and 44 show that

the ion deposition is converged at the quadratic polynomial order.
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Table 3: Table of timings for multigroup upscatter methods

Method Groups | Spatial | Upscatter Iterations | Upscatter Time (sec)
QD 200 260 14 116.61
BLD 200 260 14 27.76
LD 200 260 14 18.85
CD 200 260 14 396.12
QD 200 130 14 58.33
QD 200 520 14 233.49
QD 200 1040 14 471.02
QD 100 260 8 33.43
QD 50 260 6 12.66
QD 400 260 31 498.73
QD 800 260 76 2538.18
BLD 50 260 6 3.01
BLD 100 260 8 7.97
BLD 400 260 31 118.71
BLD 800 260 76 746.35
BLD 200 130 14 13.89
BLD 200 520 14 57.40
BLD 200 1040 14 112.65
Monte Carlo 200 - - 326
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Table 4: Table of timings for multigroup downscatter methods

Method Groups | Spatial | Downscatter Time
QD 200 260 7.94
BLD 200 260 1.66
LD 200 260 1.01
CD 200 260 26.55
QD 50 260 1.95
QD 100 260 3.88
QD 400 260 15.42
QD 800 260 30.81
BLD 50 260 0.41
BLD 100 260 0.82
BLD 400 260 3.24
BLD 800 260 6.54
QD 200 130 3.86
QD 200 520 15.49
QD 200 1040 31.88
BLD 200 130 0.82
BLD 200 520 3.28
BLD 200 1040 6.53
Monte Carlo 200 - 228
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Figure 37: Quadratic discontinuous upscatter finite element method and upscat-

ter Monte Carlo method for 3.75MeV alpha particles on aluminum at 0.0015cm.

6.5 Accuracy and Timings

Both the finite element upscatter and downscatter methods were timed for dif-
ferent ordered polynomial trial functions, refinement of the energy group mesh,
and the refinement of the spacial mesh. As the upscatter iterations are increased
the timings per individual iteration are roughly on the order of one downscatter
run of the same type. Furthermore, for the 200 group mesh in downscatter
QD finite element method the time is comparable to the 800 group downscatter
BLD finite element methdod and for the upscatter QD finite element method
the time is much less than the 800 group upscatter BLD method. The down-
scatter QD finite element method takes less time than its Monte Carlo counter
part while the upscatter QD finite element method is comparable to the up-
scatter Monte Carlo multigroup method. Thus much greater accuracy can be

obtained for equivalent of less processor cost by applying higher order methods
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Figure 38: Quadratic discontinuous downscatter finite element method and
downscatter Monte Carlo method for 3.75MeV alpha particles on aluminum

at 0.002cm.

to a problem.

For the study on convergence the order of accuracy of a method is assumed
to be proportional to one of the cell widths raised to some power a. Therefore if
the convergence in space is examined as the number of spatial cells are increased
the error of the solution decreases but at a rate determined by «. For this study
the spacial order of convergence of the energy deposition is calculated. To
obtain an estimate of the error, the different methods were compared against a

super-converged solution. The expression for error is given by

N )
> (Ds.c.,i— Dy)

_ Al =t
€= N, (55)
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1.7GeV H'->W
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Figure 39: Discontinuous upscatter finite element method dose profiles for

1.7GeV protons on tungsten

The results are for the rate of convergence are given in table 5, and as

shown the higher the polynomial method the faster the rate of convergence.

Significantly, the expected theoretical orders of accuracy in one dimension are

evidently approached.
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Figure 40: Discontinuous downscatter finite element method dose profiles for

1.7GeV protons on tungsten

Table 5: Ls errors and Spatial Order of Accuracy for Dose and were measured

over a 150 cm domain.

K LD BLD QD CD
150 0.864277 0.415089 2.67686 x 1072 | 5.35090 x 103
300 0.417809 7.77502 x 1072 | 1.16599 x 1073 | 8.47745 x 10™4
600 0.177604 1.04230 x 10~2 | 3.82016 x 10~° | 8.80775 x 10~
1200 | 5.82839x 1072 | 1.17423 x 102 | 1.16730 x 10~ ¢ | 7.11871 x 108
Order o 1.20904 2.8291 4.8387 6.7699
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Figure 41: Discontinuous upscatter finite element method dose profiles for

3.75MeV alphas on aluminum
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Figure 42: Discontinuous downscatter finite element method dose profiles for

3.75MeV alphas on aluminum
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Figure 43: Discontinuous upscatter finite element method ion deposition profiles

for 1.7GeV protons on tungsten
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Figure 44: Discontinuous downscatter finite element method ion deposition pro-

files for 1.7GeV protons on tungsten
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Figure 45: Discontinuous downscatter finite element method ion deposition pro-

files for 3.75MeV alpha particles on aluminum
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Figure 46: Discontinuous upscatter finite element method ion deposition profiles

for 3.75MeV alpha particles on aluminum
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7 Arbitrary Order Nonlinear Discontinuous Fi-

nite Element Methods

While the linear family of arbitrary degree polynomial discontinuous finite el-
ement methods were shown to yield accurate results, with efficiency, for the
challenging class of problems investigated here, a lack of robustness was evident
for spectra at very shallow depths. The extreme peakedness of these solutions
resulted in occasional oscillations in the tails, although the use of discontinuous
trial functions greatly mitigated this effect. In this section, we propose a novel
method which gives guaranteed positive numerical solutions while retaining high
accuracy. Accuracy and positivity is achieved, however, at the expense of non-
linearity and hence computational expediency, but the scheme has much scope
for optimization, suitable for future study. Here we demonstrate the method
on our downscatter transport model and contrast it against the linear finite

element approach of the previous sections.

Our basic ansatz is that the trial functions can be repesented as expansions
in arbitrary degree polynomials in space and energy but with the expansion
appearing in the exponent of the exponential function. The grid unknowns are
the polynomial expansion coefficients so that the trial functions are nonlinear
functions of these unknowns. As the exponential is a positive definite func-
tion, it follows that positive solutions will result for positive sources. However,
the system of equations for the grid unknown will be nonlinear and must be

iteratively relaxed. We present the essential details below.

Applying the Galerkin procedure to the downscatter-only effective transport

equation, we obtain

<wal’bI|L(m)—Q> :O,GIZO"'A,I)I :OB
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where

0 0
L() = Nn% - a_ES(xaE) + Oy (56)
and
Ema.z
Q= / dE' 7= "9 Hg lIl(a: E) (57)
E

where o’ and b are the order indices for the weight function w. The weak form

that results from the multiplication is

[¥@B) sy wlB,) oy — [ 9@ B) oy w(B0) |y

g

_/g/g_w B)iEds - [ (S0, B)¥(@.B)|, 3 w(E,a)|, y ds

k
Ow
S(z, E)¥(2,E)) |g41 w(E, ) g4 1 dm+// (S(z,E)¥(z, E)) a—EdEda:

k
+//agﬁg,\1; z, B)w E:cda:—// / 99— ng ,E'YdE'w(E,z)dEdz
k 9
(58)

We insist that the trial functions be discontinuous at the cell inflow boundaries
for enhanced accuracy and robustness in the solution. For every element g, k

the weak form with the discontinuities in space and energy is given by

[¥@B) leyy 0(B,3) oy — [ 2B s 0(B2) Ly

g

_//g_‘;q;(x,E)dde—/(S(x,E)q;(x,E)) 1 w(B,2) |,y da

k
Ow
(2, YO (2, B)) |13 w(Fs2) |y s dw+// (¢, B)¥(z, F)) 5 2B
g

[
k
+k/g/agﬁg,\1; z, B)w(E, :cda:—/// o= 1_’9\11( ,E')dE'w(E, x)dEdz

k 99—
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The weight functions are taken from the space of low order polynomials,

specifically Legendre polynomials, given as before by

w(z, E)apr = pa (z)py (E) (60)

where the definitions of the polynomails are given in expression 43. The trial
functions, on the other hand, are expressed as nonlinear exponential functions

in each 2D cell (&, g), of the form

mENexp[zzpa (B

a=0 b=0

(61)

where )\Z:Z are the grid unknowns. Substituting the weight function and trial
function for each g, k element yields
A B A B
> 2 AniW)pi(B) Do oA () pi(E)
/ea=0b=0 py(E)dE — /(—1)"ea=ob=0 pi(E)dE

g 9

) PP AT
~ / 51957':7) pEemin " B

k g

,g—lea_Ob =0 p ([L-)da;-

5 3 A @ ()
_/gk
k

A B
S5 AR IRk (@) (- 1)"
+ / (-1)?

Sk,gea=0b=0 Do (x)dz

33 AR Rk (0)pl (B)
+//Sk,gea=05=0 6p6£(? )dEp’;, (z)dz

PIDIRI A
+//ok,g_>grea=0"=0 pg,(E)pg, (z)dx
9
>

Aos T ok (@] T (B)

k
>
- // Tk 1 goZoumo dE'p},(E)dEpF, (z)dz = 0
kg

(62)
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The integrals for orders higher than pure linear in the exponent (i.e., without
the bilinear and higher terms) cannot be carried out in closed form. We use
low order Gauss quadrature to perform all integrals and a multidimensional
Newton’s method to relax the resulting nonlinear system of algebraic equations

for the grid unknowns.

7.1 Multidimensional Newton’s Method

There are many excellent references on solving systems of nonlinear equations,
e.g., [17, 18]. Here we give a brief recap of the multidimensional Newton method

for solving a system of nonlinear equations given by

fi(zr, 22, 23,24, -, TN

( )
fa(x1, 22,3, 24,- -, aN) =0
f3(®1, %2, 73,24, -, TN)

( )

fa(m1, 22,23, %4, , TN

In(zy, 22, 23,24, -+, 2n) =0 (63)

where there are N equations with N variables. Like the scalar Newton method,
the root can be found by iterating on the independent variable with information
from the function and the function’s slope. The method begins by setting the
initial iterate to a guess and then evaluating the function’s slope. The inter-
section to the variables axis is obtained and becomes the next guess or iterate.

The process continues until a zero is found within acceptable tolerance.

For a multidimensional nonlinear system, of the type of interest here, the
corrections are obtained from the intersections of the tangent. The corrections
are then added to the guess to form new iterates. The process iterates until
a root is found within acceptable tolerance. To obtain the iterate corrections

a Taylor’s series expansion is performed on all the nonlinear relations f;. The
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Taylor expansion of the jth equation, f; is

8 .
fi(@1, T2, 3,34, -+, TN) = fo+ FE Az

+g—£Aaz2 + g—gA:m + g—wiAm R aami, Azy + O(Az?) (64)

where Az; is the difference centered about the root for z;. The Taylor expansion

of fj(x1,z2,23,24,---,2n) = 0 which means that

2L Awy + S Ay + S Awg + SL Ay + Sl Aoy = —fo  (65)

when the O(Az?) are truncated from the Taylor expansion. In matrix form the

equations are expressed as

[ on 8n oh 8 ... 8 || i [ ]
8.’/01 8z2 8:E3 5$4 8$N ASL']_ f]'
Ofo Of2 9f2 of2 ... Of2 —

Oz dzo Oz x4 oz N Aw2 f2
Ofs Ofs 9fs Ofs ... Ofs -
Oz Ozo Oz3 Bz BN A55.3 . f3
of; of; 8f; 8fi ... Of; ) I
(9.’/51 awg 8.713 33)4 E)zN Ax-] f]
ofn Ofn Ofn Bfn ... Ofn _
L Oz1 Ozo Bz3 Bx4 8xzny 4 L AmN i | fN

Gauss elimination or LU decomposition is then applied to the matrix, and
the corrections to the iterate are obtained. The corrections are then applied to

the iterate and a new iterate is obtained. This is expressed as

bt = 2k Agh (66)

i

Where k is the iteration index and i is the ith variable for the root. The
method continues to iterate until a root is obtained within a preset tolorence,

with convergence determined according to the Lo-norm for the residual

N

Y L) =i, < e (67)

i=1
where w; is the a'b’ weight function and v is the exponential trial function given

by Eq.61.

72



8 Numerical Results of Nonlinear Methods

In this section, we present numerical results from the implementation of the
nonlinear exponential discontinuous finite element method to the straggling of
1.7GeV protons in tungsten. The results and analysis is brief and is by no
means exhaustive; there is much scope for future work in order to gain greater
understanding of the method. For the results presented here, uniform energy
groups and spacial cells have been used, with a group width of 8.5MeV and a

spatial mesh width of lcm.

1.7GeV H'->W

43.0cm
0.03 ‘ ‘ ‘ ‘ ‘
T —— Monte Carlo Downscatter N 7
0.025 |— ----  LE Downscatter —]
: —— BLE Downscatter
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0.02 — —
00.015 — —
=
= L ,
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Figure 47: Discontinuous downscatter exponential finite element method poly-

nomial order convergence for protons on tungsten at 43.0cm

As expected the exponential discontinuous finite element method yields
monotone positive results, with the exponential quadratic (QE) solution agree-
ing extremely well with the Monte Carlo and QD downscatter results. As shown
in figures 47, 48, and 49 all orders converge to the QE result for the depths

considered. Clearly, the absence of any negativities is a highly desirable and

73



1.7GeV H' ->W

65.0cm
0.03 \ ‘ \ \ \
B — Monte Carlo Downscatter
0.025— ----  LE Downscatter |
A — — BLE Downscatter
B QE Downscatter i
QD Downscatter
0.02 — —
[y
5—0.015 — —
= - -
0.01— —
0.005 — —
Y ‘ e ‘ ! L I , I ‘
800 850 900 950 1000 1050 1100 1150

Energy (MeV)

Figure 48: Discontinuous exponential downscatter finite element method poly-

nomial order convergence for protons on tungsten at 65.0cm

superior property of the nonlinear scheme.

The impact of straggling on spreading out the Bragg peak is also strongly
evident with these methods. The higher order exponential methods capture the
Bragg peak height very closely while remaining positive, and the lower orders

show a decreased peak height with a greater spread.

The results shown in Table 6 indicate that the exponetial method is ex-
tremely expensive when compared to the downscatter finite element method of
the same polynomial order in the linear family. This is not surprising given the
quadrature and Newton iterations that are required in the nonlinear method.
The quadrature order is higher for the higher order methods (typically 18 for
QE in contrast to 8 for BLE) and appears to be related to the flexibility of the
higher order polynomials in representing sharply varying solutions. Obviously,

more research must be done to optimize the exponential discontinuous method
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Figure 49: Discontinuous downscatter finite element method polynomial order

convergence for protons on tungsten at 86.0cm

so as to make it competetive with other linear element techniques, but clearly

we have shown intriguing possibilities.
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Figure 50: Discontinuous downscatter exponential finite element dose results

for 1.7GeV protons on tungsten

Table 6: Timing results for arbitrary polynomial exponential discontinuous finite

element method for 1.7GeV protons on tungsten target

Method | Average Newton Iterations | Total Time | Quadrature Order
LE 18 521.289 4
BLE 19 1464.240 6
QE 25 2.88x10* 18
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